
NASA Contractor Report 191463 'p
ICASE Report No. 93-23

ICASE U
_O • OPTIMAL CUBE-CONNECTED CUBE MULTIPROCESSORS

I(C

Xian-He Sun

Jie Wu
ýNZtJGJ41993ý '

NASA Contract No. NAS I -19480)
May 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

*1 93- .17353
SV,

National Aeronautics and
Space Administration

Langley Research Center - -

Hampton, Virginia 23681 -0001



Optimal Cube-Connected Cube Multicomputers

Xian-He Sun Jie Wu

ICASE Department of CSE
NASA Langley Research Center Florida Atlantic University

Hampton, VA 23681-0001 Boca Raton, FL 33431

Abstract

Many CFD (computational fluid dynamics) and other scientific applications can be
partitioned into subproblems. However, in general the partitioned subproblems are
very large. They demand high performance computing power themselves, and the so-
lutions of the subproblems have to be combined at each time step. In this paper, the
cube-connect cube (CCCube) architecture is studied. The CCCube architecture is an
extended hypercube structure with each node represented as a cube. It requires fewer
physical links between nodes than the hypercube, and provides the same communica-
tion support as the hypercube does on many applications. The reduced physical links
can be used to enhance the bandwidth of the remanding links and, therefore, enhance
the overall performance. The concept and the method to obtain optimal CCCubes,
which are the CCCubes with a minimum number of links under a given total number
of nodes, are proposed. The superiority of optimal CCCubes over standard hypercubes
has also been shown in terms of the link usage in the embedding of a binomial tree.
A useful computation structure based on a semi-binomial tree for divide-and-conquer
type of parallel algorithms has been identified. We have shown that this structure can
be implemented in optimal CCCubes without performance degradation compared with
regular hypercubes. The result presented in this paper should provide a useful approach
to design of scientific parallel computers.

"*This research was supported in part by the National Aeronautics and Space Administration under NASA con-
tract NAS1-19480 while the first author was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.



1 Introduction

Rapidly advancing technology has made it possible for a large number of processors to be intercon-

nected to form a single multiprocessor system. In recent years, the multiprocessor approach has

been shown to be the most straightforward and cost-effective way for achieving high performance.

However, the way in which processors, memory modules, and switches should be interconnected

to form an efficient architecture remains a research issue. Parallel computers have been built with

a variety of architectures. One of the popular parallel architectures is the hypercube architecture

(16], also known as the binary n-cube, which contains 21 processors, each of which is connected

by fixed communication links to n other nodes. The value n is known as the dimension of the

hypercube. In a hypercube structure two nodes are connected if and only if their addresses differ

in one and only one bit.

The hypercube structure has many desirable properties. It is symmetric. Any n dimensional

cube can be divided into two n - I dimensional cubes. Many other topologies, such as ring, mesh,

and tree, can be mapped into the hypercube topology. It is rich in connection, a message can be

transferred from one node to all the other nodes in a total of n steps in i•n n-cube. Extensive

research efforts have been focused on hypercube design aspects and hypercube applications. Most

of the first generation and second generation distributed-memory multiprocessors are based on

hypercube architecture. Examples of these commercial products include FPS's T series, Ncube's

nCUBE, Ametek's S/14, Intel's iPSC, and Thinking Machine's Connection Machine, which is a

hypercube interconnected bit-serial SIMID machine.

Efforts have also been made to vary the hypercube topology to obtain better interconnection

networks. Many variations of the hypercube topology, such as twisted hypercubes [5], enhanced

hypercubes [21], extended hypercubes [11], bridged hypercubes [3], incomplete hypercubes [10] and

Fibonacci cubes [71, balanced hypercubes [8] and folded hypercubes [4], etc., have been proposed.

These new architectures keep the desirable properties of hypercubes, and incorporate new features

that are more suitable for some specific applications and objectives. The Cube-Connected Cube

(CCCube) structure [23] is one of the variations of hypercube topology. A CCCube is an extended

hypercube structure with each node represented as a cube. With the same number of processors, A

CCCube requires few physical links than a comparable hypercube and provides the same support

as the hypercube does in many ways. The routing and broadcasting algorithms in the CCCube

have been discussed in several previous studies [6], [23].

The parallel divide-and-conquer paradigm is a computation paradigm which partitions a single

complex problem into a set of subproblems, which are further divided until every independent 71

subproblem has been broken up sufficiently. After all the subproblems have been solved, data (or

results) are collected. The above process can be represented by a binomial trec structure. Lo ct al.

[12] have shown that the binomial tree is an ideal computation structure for parallel divide-and-

r [i .TAJ.'L:2V'~

f- ,,i



conquer algorithms, and is superior to the classic full binary tree structure with respect to speedup

and efficiency. Since a large number of parallel algorithms are divided-and-conquer in nature, the

ability to embed (or map) a binomial tree into a network can be considered an important measure

of the network.

This paper studies the capability of embedding a binomial tree in a CCCube. We first prove

that an i-level binomial tree can be embedded in any (rn, n)-CCCube, where in is the dimension

of the outer cube and n is the dimension of the inner cube, provided that in + n > i. With the

objective of embedding a binomial tree in a CCCube using as few links as possible, we define an

optimal CCCube as being one with the minimum number of links for a given number of processors.

Reducing the number of links will lead to a higher bandwidth of the remanding links, lower network

contention, and thus better overall performance. The selection of an optimal CCCube for a given

binomial tree is also provided in this paper. Comparison is made between CCCubes and standard

hypercubes in terms of the link usage in the embedding of binomial trees. We also identify a class

of parallel algorithms that is best suited for optimal CCCube structures. This class of parallel

algorithms is based on the semi-binomial tree proposed in this paper.

This paper is organized as follows: Section 2 discusses embedding binomial trees in ('('Cubes.

The determination of optimal cube-connected cubes is discussed in Section 3. Section 4 identifies

a class of parallel algorithms based on the semi-binomial tree structure. A parallel merge sorting

example is used to illustrate how to run the proposed algorithm on optimal CCCubes. Section 5

presents conclusions. A comprehensive comparison of CCCubes with other cube-based systems has

been done in [22], and a comparison of CCCubes with Cube-Connected Cycles (CCC) [15] can be

found in [13]. The use of CCCubes in other applications can be found in [23] and [24).

2 Embedding of Binomial Trees in CCCubes

An (m, n) cube-connected cube [23], or (m, n)-CCCube, is defined as an m-dimensional hypercube

(outer-cube) with each node in the hypercube being an n-dimensional hypercube (inner-cube).

Assume that gmg,-m...gmlnln-m...1 1 is the binary address associated with each of the 2 "'+, nodes

in an (m, n)-CCCube, where gmgm-I...g, is the global address and , ... 1 is the local address.

The least significant bit, g,, of the global address will be referred as global dimension 1. and so

on. Similarly, the least significant bit of the local address designates local dimension 1. and so on.

Tkere are 7n global dimensions and n local dimensions in an (mn, u)-C(CubV. More formally. we

have the following recursive definition of an (m, v)-CCCube:

Definition 1 * A (0, n)-CCCubc is an n-dimcnsional hypcrcubc Q,,, with ont nodc in (0. 7?)-

CCCube a designated port node.

2



(0, 2)-CCCube (1, 2)-CCCube

(2, 2)-CCCube (3, 2)-CCCube

Figure 1. Constructions of (3,2) CCCube

Suppose G and G' are disjoint (m - 1, n)-CCCubes for m > 1. Then the graph obtained by

adding edges between all the port nodes in G and the corresponding port nodes in G' is an

(im, n)-CCCube. All the port nodes in G and G' are the port nodes in this (m, n)-CCCube.

Figure 1 illustrates the rule for building a (3, 2)-CCCube. Basic prope-ties of a CCCube have

been studied in [23], as well as routing and broadcasting algorithms.

The cube-connected cube architecture has many desirable properties. If we view the inner-

cubes as nodes, then the outer-cube forms the hypercube architecture. Therefore, the architecture

is symmetric, rich in connection, and can be partitioned into subcubes. The nodes in each inner-

cube provide much higher computation power than a single processor. This two-level hypercube

architecture fits many scientific applications well. For instance, the 3-D turbulence simulation

codie CDNS (Compressible Direct Simulation of Navier-Stokes) [17], which is used in and out of

the NASA Langley Research Center for basic research in the physics of compressible homogeneous

turbulence, calculates spatial derivatives with a sixth-order compact scheme. The compact scheme

requires solutions of a large sparse system with multiple right sides, where each right side can be

solved on an inner-cube concurrently, and then the solutions of each inner-cube can be combined

through the outer-cubes in the next time step. In general, the two-level computation, or partition

computational paradigm, is applicable to any simulation based on the compact scheme. It is also

applicable to any simulation code based on the alternating direction implicit (ADI) method and

the fast Poisson's solvers (17].

3



CCCubes also support any program paradigm supported by hypercubes. For example, the to-

tal data-exchange communication (191, the data-gathering communication, and the daa-scattering

communication [18] all requires log(n) communication steps on an n-dimension hypercube. there-

fore, they require no more than log(m) + log(n) communication steps on a (it, n)-CCCube. In

many cases, the CCCube architecture provides better support than a two-level hypercube. As we

mentioned in Section 1, the divide-and-conquer paradigm is one of the dominating computation

paradigms in parallel processing. The partition paradigm given above can be seen as a special case

of the divide-and-conquer paradigm. Ii this section, we prove that CCCube provides hypercube-like

support for the divide-and-conquer paradigm.

One of the most conventional graph representations of divide-and-conquer algorithms is the

binomial tree [1]. More specifically, an i-level binomial trec, Bi, can be recursively dfined as

follows:

Definition 2

"* Any tree consisting of a single node is a Be tree.

"* Suppose that T and T' are disjoint Bi-1 trees, for i > 1. Then the tree obtained by adding an

edge to wake the root of T become the leftmost offspring of the root T' is a Bi tree.

Figure 2 shows the construction of high level binomial trees from low level binomial trees. Lo ct

al (12] show the binomial tree structure as an ideal computation structure for parallel divide-and-

conquer algorithms, and show its superiority to the classic full binary tree structure, with respect to

speedup and efficiency. Therefore it is important to study the embedding of a binomial tree into a

CCCube. In general, the embedding problem on cube-based systems [2], a restricted version of the

mapping problem [14], is the problem of mapping a particular graph structure G' to a cube-based

system G'. The goal of the mapping problem is to find a mapping that minimizes the length of

the path between communication processes in this graph struct'ire G. Reducing the length of the

communication path is important. Even with the new routing schemes, such as wormhole routing

or circuit switching, shortening the path length will reduce the network contention and achieve

better performance [20]. Dilation and congestion are two measures used to measure the quality

of an embedding, where dilation is the maximum length in 6' of the image of an edge of G and

congestion of an edge of G' is the number of images of edges of G that pass through it.

Theorem 1 An i-level binomial tree can be embedded with unit dilation in any (mn. n) (C('(ub(.

provided that mn + n > i. In addition, the root node of this i-lcrdl binomial tr(c can bf' mapped io

any port node in the (in, n)-CCCube.

Proof: We only need to show that an i-level binomial tree can be embedded in any (mn. 1)

CCCube, where in + it = i. We prove it by using induction on ti. When n = 0, any (0. i)-('(('ubV

4



° °1 0

0 0
00

Bo B1  BI B3

00

B4

Figure 2. Binomial trees

is an i-dimensional hypercube Qi. Therefore, an i-level binomial tree can be embedded in this

(0, n)-CCCube [16] and the root node will be mapped to the only port node in the (0, i)-CCCube.

Suppose when m < i - 1, a i-level binomial tree Bi, with i > m can be embedded in any (in. n)-

CCCube, such that mn + n = i, and its root node to one of the port nodes. When in = i, a i-level

binomial tree, Bi, with i > in,1 can be decomposed into two disjoint (i - 1)-level binomial trees:

Bi-,1 and B'_ 1 with an edge connecting two root nodes of these two trees. Also, any (in, n)-CCCube

can be decomposed into two (in - 1, n)-CCCubes, G and G', with edges connecting the port nodes

of G and G'. Based on the assumption, B-, 1 can be embedded in G with the root node assigned

to any one of the port nodes, say a, in G. Similarly, Bi-, can be embedded in G' with the root

node assigned to the port node a', the matching node of a in G. Since a and a' are connected in

the (in, n)-CCCube, the edge that connects the root node of Bi-, and Bi'-1 can be mapped to the

edge that connects a and a'. 0

3 Finding the Optimal Cube-Connected Cube

Let m, n be the dimension of the outer-cube and the inner-cube, respectively. The following theorem

determines how to choose mn (or n) based on a constant c = in + n, i.e., a fixed number of nodes,

'We don't need to consider the case where i = m, since the corresponding (i, 0)-CCCube is an i-dimensiona.i
hypercube.

I ill | I I I I 5



such that the (m, n)-CCCube has a minimum number of links.

Note that in an (m,n)-CCCube, the total number of nodes IV! = 2?'fl- = 2' and the total

number of links IEI = c- 2 c-`1 !.2-i We represent c = 2k + 1, where 0 < I < 2 k-I, that is,2

k = Llogcj and 1 = c-2L'ogJ.

Theorem 2 To obtain an (m, n)-CCCube with a minimum number of links, the selection of in,

under a given constanst c - m + n, where c = 2 k + 1,0 < 1 < 2 k - 1, is as follows:

1. If I > k - 2 then m 2k + l- k- 1, namely m c- [logeJ - 1, and the minimum number

of links is IEI - 2c-dLogcJ-V1(c ([logcj + i) 2 L'ogcJ+1 - [logcj).

2. If I < k - 2 then n -= 2 k + I - k and the minimum number of links is IE! = 2c-LtogcJ(c +

[log cJ2LIogcJ - [logcJ + 1).

Proof: When c = m, + n is fixed, to obtain the minimum value c. 2 c-1 _-(2'-2"2) of the
2

number of links in an (m, n)-CCCube, with a given constant c = m + n, is equivalent to obtaining

the maximum value of f(m) = m(2c -2r). Note that f (m+l)-f(m) = (m+l)(2c-2'+')-m(2'-

2') = 2C - 2'n(m + 2) is monotone decreasing. Therefore, at p = max{m + lf(m + 1) - f(m) Ž

0}, f(m) reaches its maximum value, f(p). Also, if f(p) - f(p - 1) = 0, both f(p) and f(p - 1)

have the maximum value.

To find p we first determine its range by considering the following two cases:

1. If m= 2 k+l-k+l,then

f(m+l)-f(m) = 2c- 2 2k+1-k+1(2 k+l-k+l+ 2 )

= 2 c-k+1(2k-1- 2 k-I+k- 3 )

S-2c-k+ (2k-1 + I+3 - k) <0;

therefore, p < 2 k + 1 - k + 1.

2. If m = 2 k +-k- 1, then

f(m+l)-f(m) = 2 c- 2 2k+1-k-1(2 A+I-k- 1+2)
= 2 c-k-1 (2k+' -- 2"- 1 + k - 1)

= 2 c-k- (2k-l-I+k)>0;

therefore, p > 2 k + I - k.

6



Table 1. Optimal selection of m's under given c's, 1 < c < 32

c, p I c)p, p c, p
1 0 9 6,7 17 14 25 21
2 1 10 7 18 14,15 26 22
3 2 11 8 19 15 27 23
4 2,3 12 9 20 16 28 24
5 3 13 10 21 17 29 25
6 4 14 11 22 18 30 26
7 5 15 12 23 19 31 27
8 6 16 13 24 20 32 28

Table 2. The number of links in optimal CCCubes and in compatible hypercubes

Ci lcubegocccube C, 1cube, locccube

I 1 1 9 960 2304
2 3 4 10 1984 5120
3 8 12 11 4096 11264
4 20 32 12 8448 24576
5 44 80 13 17408 53248
6 96 192 14 35840 114688
7 208 448 15 73728 245760
8 448 1024 16 151552 524288

With the above determined range of p, let us examine the case where m =2k + I -

f(m + 1) - f(m) = 2c - 2 2+1-k( 2 k + I - k + 2)

--- c-k( k- + ))

Therefore, whenl-k+2<0, p=2k+I-k+1;and when l-k+2>0, p=2k+l-k. 0

Table I shows those p's under given c's, with c fanging from 1 to 32. Table 2 compares optimal

CCCubes with compatible hypercubes in terms of number of links used, where c stands for the

dimension of hypercubes, locccube for the number of links in optimal CCCubes, and 1,,,b, for the

number of links in hypercubes. Figure 3 shows the optimal CCCube structure with c ranging from

1 to 5.

Figure 4 shows the comparison between the standard hypercube and the optimal CCCube in

terms of link usage in the embedding of binomial trees, which is measured by the number of edges

in a binomial tree divided by the total number of edges in hypercubes or optimal CCCubes.

7



I0
(0, 1.)-CCCube (1, 1)-CCCube (2, 1)-CCCube

(2,2)-CCCube (1, 3)- C CCube

(3, 2)-CCCube

Figure 3. Optimal CCCubes



35
hypmutlabg

30 - - CCC

~25

,20

15

-3 10

0 2 4 6 8 10 12

Figure 4. Link usage in standard hypercubes and optimal CCCubes

4 Execution of Parallel Algorithms on Optimal CCCubes

The most cunventional graph representations of parallel-and-conquer algorithms are trees, such as
binary trees and binomial trees. Divided-and-conquer algorithms normally involve three stepsL9]:
broadcasting, computation, and aggregation. The broadcasting phase distributes load to different
nodes from one or more 1/O nodes which has I/O function. The load should be evenly allocated to
all nodes to reduce total execution time. The computation phase performs the computation required
by each subproblem. The aggregation phase is normally a reverse procedure of broadcasting, and
represents a collection process of results.

We study a computation structure based on a semi-binomial tree to implement parallel divide-
and-conquer algorithms. In a semi-binomial tree, every node in the second level of the tree is the
root node of a binomial tree. Figure 5 shows a semi-binomial tree with two second level nodes each
of which is the root node of a B3. In a CCCube structure, if we use the host as the root node of a
semi-binomial tree and each 1/O node (normally a port node) as the node at the second level of the
tree, we can easily construct a spanning semi-binomial tree. For example. when both port nodes in
the optimal (1, 3)-CCCube are 1/O nodes, the semi-binomial tree in Figure 5 is the corresponding

spanning tree.

The outline of a parallel divide-and-conquer algorithms based on the semi-binomial tree struc-

ture is as follows:

1. Give the host the problem to be solved.

9



Host

"I/0 node

Figure 5. A semi-binomial tree

2. The host divides the problem into m subproblems and assigns each to a distinct 1/0 node in

a CCCube. Normally rn is the number of I/O nodes.

3. Each I/O node (the root node of a binomial tree) divides the subproblem in half and passes

the first half to the child which has the most descendants and has not yet received work. The

same process is applied to the second half, until all children receive work.

4. Every node performs the required work associated with each subproblem.

5. The results are passed back to each I/O node, and are merged in the reverse order when

subproblems are passed down the tree.

6. The host collects results from each 1/0 node.

Note that in the above scheme, step I to step 3 corresponds to the broadcasting phase. Step

4 is the computation phase where every node computes at the same step. Steps 5 and 6 are the

aggregation phase. To prevent potential bottleneck at the host, computations at step I and step 6

should be relatively light.

We use the merge sorting algorithm to illustrate the proposed approach. Suppose a list of 32

elements (3,2, 12,7,3, 1, 13,45,23.43,8,0,1 1,34, 15, 16.4,9,25.30,21,31.54, 7•.89,93.63,64,

29,20, 10,41) is to be sorted in the optimal (l,3)-CC'Cube with two I/0 nodes: I/001' and

to



(3.2. 12. 7, 5., 1. 13. ,45. 23. 43. 8. 0. 11.34. 15. 16) (23.43.8.0. 11.34. 15. 16)

(15.16) (11. 34, 15, 16)

(5.1) (23.43)

(3.2)

Figure 6. Broadcasting phase of merge sorting

I/0( 2 )(see Figure 3). First, the host divides the list into two sublists of length 16. Suppose 1/0(')
receives sublist (3,2, 12,7,5, 1, 13,45,23,43,8,0, 11,34, 15, 16). The sorting process of a sublist as-

signed to 1/0(1) is demonstrated in Figures 6 and 7. Figure 6 shows the broadcasting process.

At the computation step every node, including iI/0(), performs a swap operation of two elements
if necessary. The aggregation phase (Figure 7) resembles the broadcasting phase, but the mes-

sage is distributed in the reverse order. At the end of the aggregation phase, the I/1(0) has the

sorted sublist (0, 1,2,3,5,7,8,11,12,13,15,16,23,34,43,45). Similarly, 1/0(0) has the sorted sub-

list (4, 9, 10, 20, 21,25, 29, 30, 31,41,54, 63, 64, 78, 89, 93). Finally, the host collects and merges these

two sorted sublists.

The proposed parallel divide-and-conquer algorithms can be implemented in regular CCCubes

and hypercubes. Since there is no performance degradation when they are implemented in the

CCCubes which use the fewest number of links, the optimal CCCube is a cost-effective structure

for implementing this class of algorithms.

II



(0. 1.2. 3. 5. 7, 8, 11, 12. 13. 15. 16. 23. 34. 43. 45) (0. 8. 11.15, 16. 23. 34. 43)

(1. 2.3.5. 7. 12. 13, 45)

(11, 15. 16. 34)

(7 ,12 ( 0 8 2.3 ., 1270 . 3 3

0 0
(1,5) (23.43)

(2.3)

Figure 7. Aggregation phase of merge sorting

5 Conclusions

This paper explored in detail some properties of the Cube-Connected Cube (CCCube) structure,

a variant of the hypercube structure, with each node replaced by a cube. We considered first the

embedding of binomial tree, a useful structure for divide-and-conquer types of parallel algorithms.

into a CCCube. It was proved that an i-level binomial tree can be embedded into any (m., n)-

CCCube, where m is the dimension of outer cube and n is the dimension of the inner cube.

provided that m + n > i. With the objective of embedding a binomial tree into a CCCube with

a minimum number of links, the selection of an optimal (m, n)-CCCube under a given constant

c = tn + n was provided in this paper. Comparison was also made between an (7n, n)-CCCube

with a c-dimensional hypercube in terms of the link usage in the embedding of a c-level binomial

tree. A class of parallel divide-and-conquer algorithm was proposed based on a semi-binomial tree

structure. It was shown that optimal CCCube is a cost-effective structure to implement such class

of algorithms.

12



References

[1] BROWN, M. R. Implementation and analysis of binomial queue algorithms. SIAM Journal of
Computing. Aug. 1978, 161-164.

[21 CHEN, W. K., STALLMANN, M., AND GEHRINGER, E. Hypercube embedding heuristics: An
ecaluation. International Journal of Parallel Programming. 18, (6), 1989, 505-549.

[31 EL-AMAWY, A., AND LATIFI, S. Bridged hypercube networks. Journal of Parallel and
Distributed Computing. 1990, 90-96.

(4] EL-AMAWY, A., AND LATIFI, S. Properties and performance of folded hypercubes. IEEE
Tran. on parallel and distributed systems. 2, (1), Jan. 1991, 31-42.

(5] ESFAHANIAN, A., Ni, L. M., AND SAGAN, B. E. The twisted n-cube with application to
multiprocessing. IEEE Transaction on Computers. 40, (1), Jan. 1991, 88-93.

(61 GOYAL, P., AND FERNANDEZ, E. Cube-connected cubes - a recursively defined network
architecture for parallel computation. Proc. 4th Conf. on Hypercubes. March 1989.

[7] Hsu, W. J., PAGE, C. V., AND Liu, J. S. Computing prefixes on a large family ofintercon-
nection topologies. Proceedings of the 1992 International Conference on Parallel Processing.
Vol 3, Aug. 1992, 153-159.

[81 HUANG, K., AND WU, J. Balanced hypercubes. Proc. of the 1992 International Conference
on Parallel Processing. Vol 3, Aug. 1992, 80-84.

[91 JAMIESON, L. H., GANNON, D., AND DOUGLASS, R. J. The Characteristics of Parallel
Algorithms. The MIT Press, 1987.

[101 KATSEFF, H. Incomplete hypercubes. Hypercube Miltiprocessors. M. T. Heath, Ed., 1982.
258-264.

[Hl] KUMAR, J. M., AND PATNAIK, L. M. Extended hypercube: A hierarchical interconnection
network of hypercubes. IEEE Trans. on Paroilel and Distributed Systcyms. 3. (1). Jan. 1992,
45-57.

[12] Lo, V. M., RAJOPADHYE, S.. GUPTA, S., KfLDSEN, D., MOHAMED, M. A., AND TELLE,

J. Mapping divide-and-conquer algorithms to parallel architectures. Proc. 1990 International
('onference on Parallel Processing. 1990, 111, 128-135.

[13] Luo, Y., AND Wu, J. Gray-code-based cube-connected cubes. to appear in Congressus
Numerantium, 1993.

[141 NI, L., AND KING, C. T. On partition and mapping for hypercube computing. bzternational
Journal of Parallel Programming. 17, (6), 1988, 475-495.

[15] PREPARATA, F., AND VUILLEMIN, J. The cube-connected cycles, a versatile network for
parallel computation. ('omm. of ACM. May 1981, 30-39.

[16] SAAD, Y., AND) SCHULTZ, M. H. Topological properties of hypercubes. IEEE Transactions
on Computers. 37. (7), July 1988, 867-872.

13



[17] SUN, X.-H., AND JOSLIN, R. A simple parallel prefix algorithm for compact finite-difference
scheme. ICASE Technical Report, 93-16, ICASE, NASA Langley Research Center, 1993.

[18] SUN, X.-H., AND Ni, L. A structured representation for parallel algorithm design on multi-
computers. In Proc. of the Sixth Conf. on Distributed Memory (Computing (April 1991).

[19] SUN, X.-H., Ni, L., SALAM, F., AND GUO, S. Compute-exchange computation for solving
power flow problems: The model and application. In Proc. of the Fourth SIAM Conf. on
Parallel Processing for Scientific Computing (Dec. 1989).

[20] SuN, X.-H., ZHANG, H., AND Ni, L. Efficient tridiagonal solvers on multicomputers. IEEE
Transactions on Computers 41, 3 (1992), 286-296.

[21] TZENG, N. F., AND WEI, S. Enhanced hypercubes. IEEE Trans. on Computers. 40, (3),
March 1991, 284-294.

[22] Wu, J. Broadcasting in injured hypercubes using limited global information. TR-CSE-92-39,
Dept. of Computer Science and Engineering, Florida Atlantic University, Nov. 1992.

[23] Wu, J., AND LARRTENDO-PETRIE, M. Cube-connected-cube network. Microprocessing and
Microprogramming. 33, (5), 1992, 299-310.

[24] WU, J., AND Wu, T. An efficient vector-matrix-vector multiplication on cube-connected-
cubes multicomputers. to appear in International Journal of Mini and Microcomputers, 1993.

14



REPORT DOCUMENTATION PAGE Form Approved

Publc rporing urdn fr ths cllflionof~ oratio isestmate t' a0MB 
No. 0704-0188

P~b~C e0Ot~t bud~f to to CI~hOnof nfon~a~o, S st~ ~ ;ed oa :7qe''o~ ouper response. nduiodng the time for revieing instructions searching ex sling data sour~ces
gathering and maintaining the data needed. andcomoletrn5 and re,,"n the jIeton f ntornmatiofl Send commients regarding this burden, estim~ate or any other aspe<r of this
collection Of intOrmat~on. nclud ng sugqgestions for reducing this brurdem. to Washnqitorr Heado.atrles Services. Directorate fo, information Operations and Reports, 121 is efferson
Oaoo*f4ighiay. Suite t20 . Aringron, VA Z2202-4302. and totheOffice 04Manaqenent and Budget, Papeinork Reduction Project (0704-0 188). washflsgton DC 20503

1. AGENCY USE ONLY (Leave blak 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Mav 991 ontrrtolRenort
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

OPTIMAL CUBE-CONNECTED CUBE MULTIPROCESSORS C NASl-19480

________________________________________________WU 505-90-52-01
6. AUTHOR(S)

Xian-He Sun
Jie Wu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 93-23
NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration NASA CR-191463
Langley Research Center ICASE Report No. 93-23
Hampton, VA 23681-0001

III. SUPPLEMENTARY NOTES Subm. to Int'l J. on Micro-
Langley Technical Monitor: Michael F. Card computer Applications on Parallel
Final Report & Multiprocessor Architectures

12a. DISTRIBUTION / AVAILABILITY STATEMENT T12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 62j

13. ABSTRACT (Maximum 200 words)

Many CFD (computational fluid dynamics) and other scientific applications can be partitioned into subproblems.
However, in general the partitioned subproblems are very large. They demand high performance computing power
themselves, and the solutions of the subproblems have to be combined at each time step. In this paper, the cube-
connect cube (CCCube) architecture is studied. The CCCube architecture is an extended hypercube structure with
each node represented as a cube. It requires fewer physical links between nodes than the hypercube, and provides
the same communication support as the hypercube does on many applications. The reduced physical links can be
used to enhance the bandwidth of the remanding links and, therefore, enhance the overall performance. The concept
and the method to obtain optimal CCCubes, which are the CCCubes with a minimum number of links under a
given total number of nodes, are proposed. The superiority of optimal CCCuhes over standard hypercubes has also
been shown in terms of the link usage in the embedding of a binomial tree. A useful computation structure based
on a semi-binomial tree for divide-and-conquer type of parallel algorithms has been identified. We have shown that
this structure can be implemented in optimal CCCubes without performance degradation compared with regular
hypercuhes. The result presented in this paper should provide a useful approach to design of scientific parallel
computers.

14. SUBJECT TERMS IS. NUMBER OF PAGES

parallel processing, parallel architectures, hypercube, cube- 16
connected cube, optimal cube-connected cube, divide-and-conquer 16. PRICE CODE
paradigm, CFD applications A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE I OF ABSTRACT

Unclassified I Unclassified I__________
NSN 7540-01-260-SS00 Standard Form 298 (Rev 2-89)

PVOCb~d bi, ANSI S.td 1]9.18

*U.S. GOVERNMENT PRINTING OFFICIE! 1993 - 718-064,1600S


